Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Liu, Jing Heng and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: zhuhj@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.076$
$w R$ factor $=0.188$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,5-Dibenzoylterephthalic acid pyridine tetrasolvate

The asymmetric unit of the title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6}{ }^{-}$ $4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, contains one half-molecule of 2,5-dibenzoylterephthalic acid (DBTA) and two pyridine molecules; the DBTA molecule is centrosymmetric. The pyridine molecules are linked to DBTA by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which may be effective in the stabilization of the crystal structure.

Comment

2,5-Dibenzoylterephthalic acid (DBTA) and its isomer 4,6dibenzoylisophthalic acid (DBIA) can be utilized to synthesize organic semiconductors and conjugated polymers (Tonzola et al., 2003), which are of wide current interest for applications in electronic and optoelectronic devices, including light-emitting diodes (Kolosov et al., 2002), thin-film transistors and photovoltaic cells (Antoniadis et al., 1994). We report here the crystal structure of the title compound, (I), which is of interest to us in this field.

(I)

In the molecular structure of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half-molecule of DBTA and two pyridine molecules; the DBTA molecule is centrosymmetric.

Rings $A(\mathrm{C} 18 / \mathrm{C} 19 / \mathrm{C} 21 / \mathrm{C} 18 \mathrm{~A} / \mathrm{C} 19 \mathrm{~A} / \mathrm{C} 21 \mathrm{~A}), B(\mathrm{C} 11-\mathrm{C} 16)$, C (N1/C1-C5) and $D(\mathrm{~N} 2 / \mathrm{C} 6-\mathrm{C} 10)$ are, of course, planar; the dihedral angles between them are $A / B=83.85(3)^{\circ}$ and $C / D=$ 85.47 (4) ${ }^{\circ}$.

As can be seen from the packing diagram (Fig. 2), the pyridine molecules are linked to DBTA by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$

Received 7 September 2006 Accepted 19 September 2006

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (A) $-x$, $1-y, 1-z$.]

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which may be effective in the stabilization of the crystal structure. Dipoledipole and van der Waals interactions are also effective in the molecular packing.

Experimental

DBTA was prepared by the literature method (Liu et al., 2006). The crystals were obtained by dissolving DBTA (1.5 g) in pyridine (25 ml) and then allowing the solvent to evaporate slowly at room temperature for about 5 d .

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
$Z=2$
$M_{r}=690.73$
Monoclinic, $P 2_{1} / c$
$a=9.990(3) \AA$
$b=8.313$ (1) \AA
$c=21.437$ (2) \AA
$\beta=90.75$ (3) ${ }^{\circ}$
$V=1780.1(6) \AA^{3}$
$D_{x}=1.289 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.974, T_{\text {max }}=0.983$
3678 measured reflections
3476 independent reflections
1385 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections
frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.188$
$S=1.06$
3476 reflections
236 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+0.8 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.023 (2)

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.82	1.76	$2.569(5)$	168
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.59	$3.256(6)$	129

Symmetry code: (i) $-x,-y+1,-z+1$.
H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, where $x=1.2$ for aromatic and $x=1.5$ for all other H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Antoniadis, H., Hsieh, B. R., Abkowitz, M. A., Jenekhe, S. A. \& Stolka, M. (1994). Synth. Met. 62, 265-271.

Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kolosov, S., Adamovich, V., Djurovich, P., Thompson, M. E. \& Adachi, C. (2002). J. Am. Chem. Soc. 124, 9945-9954.

organic papers

Liu, S., Ji, J.-X., Wang, D.-D. \& Zhu, H.-J. (2006). Acta Cryst. E62, o1387o1389.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Tonzola, C. J., Alam, M. M., Kaminsky, W. \& Jenekhe, S. A. (2003). J. Am. Chem. Soc. 125, 13548-13558.

[^0]: © 2006 International Union of Crystallography All rights reserved

